Hands-on Data Analysis and Visualization with Pandas

Lessons
Lab
TestPrep
AI Tutor (Add-on)
Get A Free Trial

About This Course

Skills You’ll Get

1

Preface

2

Introduction to Data Analysis

  • Inspiration for data analysis
  • Domain expertise
  • Maths and statistics
  • Artificial intelligence
  • Machine learning
  • Data Infrastructure
  • Data Analysis Process
  • Why Python for Data Analysis?
  • Conclusion
3

JupyterLab

  • Introduction to JupyterLab
  • Components
  • Cell modes
  • Menu
  • Magic commands
  • Keyboard shortcuts
  • Conclusion
4

Python Overview

  • Python, Hello World
  • Variables and data types
  • Functions
  • Lambda
  • List comprehensions
  • Functional programming using (map, filter, and reduce)
  • Working with datetime objects
  • Conclusion
5

Introduction to Numpy

  • Ndarray
  • Difference between List and Numpy arrays
  • Storage
  • Type check
  • Speed
  • Copying arrays
  • Mathematical operations
  • Trigonometric functions
  • Statistical operations
  • Reshaping
  • Vertical and horizontal stacking of Numpy arrays
  • Fancy indexing
  • Indexing with Boolean arrays
  • Broadcasting
  • Conclusion
6

Introduction to Pandas

  • Data structures in pandas
  • Series
  • DataFrames
  • Conclusion
7

Data Analysis

  • Handling different file formats
  • Handling rows and columns
  • Groupby
  • Filter
  • Concatenate DataFrames
  • Merge DataFrames
  • Purging duplicate rows
  • Data Transformations
  • Crosstab
  • Cleansing the Data
  • Replacing individual values
  • Pivot and pivot table
  • Grouper
  • Handling large datasets
  • Modin Pandas
  • Conclusion
8

Time Series Analysis

  • Creating time series data
  • Converting string-based dates to datetime objects
  • Unix / Epoch time
  • Time Series Analysis Using a Real-Time Dataset
  • Handling Timezones
  • Shifting or Lagging
  • Handling Holidays
  • Conclusion
9

Introduction to Statistics

  • Population
  • Sample
  • Types of data
  • Levels of Measurement
  • Inferential Statistics
  • Hypothesis Testing
  • Conclusion
10

Matplotlib

  • Why data visualization?
  • Matplotlib architecture
  • Chart properties
  • Controlling xticks, y_ticks, and tick_labels
  • Scatter plot
  • Bar plot
  • Histograms
  • Pie Chart
  • Subplots
  • Conclusion
11

Seaborn

  • Why Seaborn?
  • Matplotlib versus Seaborn
  • About pokemon
  • Importing libraries and dataset
  • Visualizing Statistical Relationships
  • Plotting Categorical Variables
  • Visualizing the Distribution of the Data
  • Conclusion
12

Exploratory Data Analysis

  • A little story, Titanic
  • Importing libraries and dataset
  • Handling missing values
  • Variable identification
  • Categorical nominal
  • Univariate analysis
  • Bivariate analysis
  • HeatMap
  • Multivariate Analysis
  • Handling Outliers
  • Feature Selection
  • Conclusion

Related Courses

All Course
scroll to top